Tipos de Pruebas No Paramétricas
Las principales pruebas no paramétricas son las siguientes:
• Prueba χ² de Pearson
• Prueba binomial
• Prueba de Anderson-Darling
• Prueba de Cochran
• Prueba de Cohen kappa
• Prueba de Fisher
• Prueba de Friedman
• Prueba de Kendall
• Prueba de Kolmogórov-Smirnov
• Prueba de Kruskal-Wallis
• Prueba de Kuiper
• Prueba de Mann-Whitney o prueba de Wilcoxon
• Prueba de McNemar
• Prueba de la mediana
• Prueba de Siegel-Tukey
• Prueba de los signos
• Coeficiente de correlación de Spearman
• Tablas de contingencia
• Prueba de Wald-Wolfowitz
• Prueba de los rangos con signo de Wilcoxon
La mayoría de estos test estadísticos están programados en los paquetes estadísticos más frecuentes, quedando para el investigador, simplemente, la tarea de decidir por cuál de todos ellos guiarse o qué hacer en caso de que dos test nos den resultados opuestos. Hay que decir que, para poder aplicar cada uno existen diversas hipótesis nulas y condiciones que deben cumplir nuestros datos para que los resultados de aplicar el test sean fiables.
Esto es, no se puede aplicar todos los test y quedarse con el que mejor convenga para la investigación sin verificar si se cumplen las hipótesis y condiciones necesarias pues, si se violan, invalidan cualquier resultado posterior y son una de las causas más frecuentes de que un estudio sea estadísticamente incorrecto. Esto ocurre sobre todo cuando el investigador desconoce la naturaleza interna de los test y se limita a aplicarlos sistemáticamente.